Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med ; 20(1): 470, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482371

RESUMO

BACKGROUND: The recruitment of a sufficient number of immune cells to induce an inflamed tumor microenvironment (TME) is a prerequisite for effective response to cancer immunotherapy. The immunological phenotypes in the TME of EGFR-mutated lung cancer were characterized as non-inflamed, for which immunotherapy is largely ineffective. METHODS: Global proteomic and phosphoproteomic data from lung cancer tissues were analyzed aiming to map proteins related to non-inflamed TME. The ex vivo and in vivo studies were carried out to evaluate the anti-tumor effect. Proteomics was applied to identify the potential target and signaling pathways. CRISPR-Cas9 was used to knock out target genes. The changes of immune cells were monitored by flow cytometry. The correlation between PKCδ and PD-L1 was verified by clinical samples. RESULTS: We proposed that PKCδ, a gatekeeper of immune homeostasis with kinase activity, is responsible for the un-inflamed phenotype in EGFR-mutated lung tumors. It promotes tumor progression by stimulating extracellular matrix (ECM) and PD-L1 expression which leads to immune exclusion and assists cancer cell escape from T cell surveillance. Ablation of PKCδ enhances the intratumoral penetration of T cells and suppresses the growth of tumors. Furthermore, blocking PKCδ significantly sensitizes the tumor to immune checkpoint blockade (ICB) therapy (αPD-1) in vitro and in vivo model. CONCLUSIONS: These findings revealed that PKCδ is a critical switch to induce inflamed tumors and consequently enhances the efficacy of ICB therapy in EGFR-mutated lung cancer. This opens a new avenue for applying immunotherapy against recalcitrant tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína Quinase C-delta , Humanos , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteômica , Microambiente Tumoral , Proteína Quinase C-delta/genética
2.
Pharmacol Res ; 184: 106454, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115525

RESUMO

Chimeric Antigen Receptor (CAR) T cells have changed the therapeutic landscape of hematological malignancies with overwhelming success. The clinical success of CAR T-cell therapy in hematologic malignancies has fueled interest in exploring the technology in solid tumors. However, the treatment of solid tumors presents a unique set of challenges compared to hematological tumors. The biggest impediments to the success of CAR T cell treatment are the paucity of tumor-specific antigens that are produced selectively and uniformly and the immunosuppressive tumor microenvironment. To overcome these significant challenges, nanotechnology has been involved to improve the efficacy of CAR-T cells. In this review, we systematically introduced the components of different generations of CARs and summarized recent innovations in nano-based CAR-T cell therapy to conquer therapeutically resistant non-hematologic malignancies, including mRNA and hydrogel-based CAR T cells delivery, photothermal-remodeling, and tumor microenvironment-based CAR T cell therapy. These nanotechnologies remarkably facilitate in vivo generation of CAR T cells and hold promise as a therapeutic platform to treat solid tumors and even other diseases.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Hidrogéis , Imunoterapia Adotiva , Nanotecnologia , Neoplasias/patologia , RNA Mensageiro , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Microambiente Tumoral
3.
Pharmacol Res ; 158: 104897, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32422343

RESUMO

Ischemia/reperfusion (I/R) injury is a pathological process caused by reperfusion. The prevention of I/R injury is of great importance as it would enhance the efficacy of myocardial infarction treatment in patients. Isovaleroylbinankadsurin A (ISBA) has been demonstrated to possess multiple bioactivities for treating diseases. However, its protective effect on myocardial I/R injury remains unknown. In this study, the cardiomyocytes hypoxia/reoxygenation (H/R) in vitro model and coronary artery ligation in vivo model were used to examine the protective effect of ISBA. Apoptosis was determined by flow cytometry and Caspase 3 activity. Protein level was determined by Western blot. The mitochondrial viability was examined with mitochondrial viability stain assay. Mitochondrial membrane potential was detected by JC-1 staining and reactive oxygen species (ROS) was stained with 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). The binding interactions between ISBA and receptors was simulated by molecular docking. Results showed that ISBA effectively protected cardiomyocytes from I/R injury in in vitro and in vivo models. It remarkably blocked the apoptosis induced by H/R injury through the mitochondrial dependent pathway. Activation of the reperfusion injury salvage kinase (RISK) pathway was demonstrated to be essential for ISBA to exert its protective effect on cardiomyocytes. Moreover, molecular docking indicated that ISBA could directly bind to glucocorticoid receptor (GR) and thus induce its activation. Furthermore, the treatment of GR inhibitor RU486 partially counteracted the protective effect of ISBA on cardiomyocytes, consistent with the results of docking.Most attractively, by activating GR dependent RISK pathway, ISBA significantly elevated the cellular anti-oxidative capacity and hence alleviated oxidative damage induced by I/R injury. In conclusion, our study proved that ISBA protected the heart from myocardial I/R injury through activating GR dependent RISK pathway and consequently inhibiting the ROS generation. It provides a valuable reference for ISBA to be developed as a candidate drug for cardiovascular diseases.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Kadsura , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular/métodos , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/agonistas , Transdução de Sinais/fisiologia
4.
Front Physiol ; 9: 699, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962955

RESUMO

Background and Objective: Ischemic heart disease (IHD) has been the major issue of public health. Panax ginseng (ginseng) has been verified as an effective traditional Chinese medicines and exerted cardioprotective effect. This study aimed to investigate the polysaccharide fraction of ginseng on hypoxia/reoxygenation (H/R) injury in cardiomyocytes and the underlying mechanisms. Methods: Ginseng was extracted by ethanol and fractionated by high-speed counter current chromatography (HSCCC) and column separation. The cardioprotective effect was evaluated in H9c2 cardiomyocytes underwent H/R treatment. The cell viability, apoptosis and mitochondrial respiration were examined. Results: An acid polysaccharides fraction of ginseng (AP1) was identified the most effective fraction in protecting cardiomyocytes from H/R injury. AP1 restored the mitochondrial function by maintaining mitochondrial membrane potential (MMP), blocking the release of cytochrome C, and increasing the ATP generation and oxygen consumption rate (OCR) of cardiomyocytes. Meanwhile, AP1 induced the expression of glucocorticoid receptor (GR) and estrogen receptor (ER) which further activated reperfusion injury salvage kinase (RISK) pathway. Finally, AP1 increased nitric oxide (NO) production and regulated endothelial function by increasing endothelial NO synthase (eNOS) expression and decreasing inducible NOS (iNOS) expression in H/R injury. Conclusion: The results suggested that AP1 exerted a protective effect in myocardial H/R injury mainly through maintaining myocardial mitochondrial function, thereby inhibiting myocardial H/R caused apoptosis and increasing the expressions of GR and ER, which in turn mediated the activation of RISK pathway and eNOS-dependent mechanism to resist the reperfusion injury.

5.
Phytomedicine ; 44: 239-246, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29551647

RESUMO

BACKGROUND: Guanxin Kangtai preparation (GXKT), consisting of Panax ginseng, Panax notoginseng and Ilex pubescens, is a new proprietary Chinese medicines under development for treating coronary heart disease. Like other Chinese medicines, the components of GXKT were complex and the bioactive compounds remained unclear. PURPOSE: To discover bioactive compounds as quality markers (Q-markers) for better quality control of GXKT. STUDY DESIGN: Chinese medicines was separated into fractions. The correlation between chemical information and bioactivity of these fractions were analyzed with multivariate statistical methods to discover bioactive compounds responsible for the actions of Chinese medicine. METHOD: GXKT was separated into fractions by using high-performance liquid chromatography (HPLC). Ultra HPLC coupled with time-of-flight mass spectrometer (UHPLC-TOF/MS) was applied to detect compound information from these fractions to form a chemical database. The bioactivity of these fractions in protecting cardiomyocytes from ischemia/reperfusion injury was examined in H9c2 cells that were exposed to hypoxia followed by reoxygenation (H/R). Then, partial least square model and orthogonal projections to latent structures discriminant analysis were employed to discover bioactive compounds from the chemical database that were positively correlated with the bioactivity of GXKT fractions. Finally, the bioactivity of these compounds was confirmed by bioassay in H9c2 cells. RESULTS: The chemical information of 120 fractions separated from GXKT was detected and extracted by UHPLC-TOF/MS, and a chemical database including 61 high abundance compounds were formed from all fractions. These fractions produced different extent of protective effect to H9c2 cell underwent H/R treatment with cell viability ranging from 33.43% to 74.91%, demonstrating the separation of bioactive compounds among different fractions. The multivariate analysis discovered 16 compounds from GXKT positively correlated with the bioactivity of GXKT. Of these compounds, 6 compounds, i.e.: ginsenoside Rg1, Rb1, Rh1, Rc, ilexsaponin A1, and chikusetsusaponin IVa were chemical identified and also confirmed for their responsibility to the action of GXKT by bioassay. CONCLUSION: Ginsenoside Rg1, Rb1, Rh1, Rc, ilexsaponin A1, and chikusetsusaponin IVa were bioactive compounds and qualified as Q-markers for quality control of GXKT. This research provided a useful reference for the quality research of Chinese medicines.


Assuntos
Biomarcadores/análise , Cardiotônicos/normas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/normas , Animais , Cardiotônicos/farmacologia , Linhagem Celular , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Ginsenosídeos/análise , Ilex/química , Espectrometria de Massas , Análise Multivariada , Miócitos Cardíacos/efeitos dos fármacos , Panax/química , Panax notoginseng/química , Controle de Qualidade , Ratos
6.
Biochem Pharmacol ; 142: 133-144, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28711625

RESUMO

Recently, microsomal prostaglandin E synthase 1 (mPGES-1) has attracted much attention from pharmacologists as a promising strategy and an attractive target for treating various types of diseases including rheumatoid arthritis (RA), which could preserve the anti-inflammatory effect while reducing the adverse effects often occur during administration of non-steroidal anti-inflammatory drugs (NSAIDs). Here, we report that sinomenine (SIN) decreased prostaglandin (PG)E2 levels without affecting prostacyclin (PG)I2 and thromboxane (TX)A2 synthesis via selective inhibiting mPGES-1 expression, a possible reason of low risk of cardiovascular event compared with NSAIDs. In addition, mPGES-1 protein expression was down-regulated by SIN treatment in the inflamed paw tissues both in carrageenan-induced edema model in rats and the collagen-II induced arthritis (CIA) model in DBA mice. More interestingly, SIN suppressed the last step of mPGES-1 gene expression by decreasing the DNA binding ability of NF-κB, paving a new way for drug discovery.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Experimental/tratamento farmacológico , Edema/tratamento farmacológico , Expressão Gênica/efeitos dos fármacos , Morfinanos/uso terapêutico , Prostaglandina-E Sintases/genética , Células A549 , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Artrite Experimental/imunologia , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Edema/imunologia , Feminino , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos DBA , Morfinanos/efeitos adversos , Morfinanos/isolamento & purificação , Morfinanos/farmacologia , Ratos Sprague-Dawley , Transfecção
7.
Fitoterapia ; 119: 75-82, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28390974

RESUMO

Six new sesquiterpenoids, namely nardosinanones J-N and nardoaristolone C, were isolated from the rhizomes and roots of Nardostachys chinensis Batal. Their structures were determined by interpretation of spectroscopic data (HR-ESI-MS, 1D and 2D NMR). A combination of X-ray crystal diffraction, ECD calculation, and Mosher ester methods was employed to determine the absolute configuration of the isolated compounds. Compounds 1-2, 4-6 were evaluated anti-inflammatory activities in LPS-stimulated RAW264.7 macrophages. The results showed that compound 5 obviously inhibited LPS-induced iNOS and COX-2 protein expression compared to single LPS stimulation, which indicated the potential effect to medicate anti-inflammatory.


Assuntos
Anti-Inflamatórios/química , Nardostachys/química , Sesquiterpenos/química , Animais , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Raízes de Plantas/química , Células RAW 264.7 , Rizoma/química , Sesquiterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...